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NONLINEAR BENDING OF
RECTANGULAR ORTHOTROPIC PLATES

A. K. NIYOGI

Department of Civil Engineering, University ofIowa, Iowa City, Iowa 52240

Abstract-Displacement formulation of the governing field equations for nonlinear behaviour of rectilinearly
orthotropic elastic plates are presented. These equations are then used to obtain an approximate solution of a
simply supported rectangular plate subjected to a uniformly distributed load. The Galerkin-Dubnov technique
is used to obtain the approximate solution. Nonlinear behaviour is studied for some specific degrees oforthotropy.

INTRODUCTION

MANY important problems of structural strength and stability of plates, arising in modern
aircraft construction, cannot be adequately analyzed on the basis of the classical theory
since the plate deflections experienced are not small in comparison with the plate thick­
ness. In this case the membrane action of the plate must be considered which leads to
nonlinear terms in the equations of equilibrium of the plate element. The field equations
which include the effect of the membrane stresses were derived by von Karman for elastic
isotropic plates under static loadings. Later his theory was extended to include dynamic
effects by Herrmann [IJ and to orthotropic plates by Rostovtsev [2J. The formulation
given by Rostovtsev is in terms of stress function, and has been used by Nowinski [3J,
Nowinski and Ismail [4J et al., to study several important problems of practical interest.
It is interesting to note that the problems treated so far have stress free edge conditions.
While it is possible to use Rostovtsev's formulation for problems in which the edges of
the plate are immovable, it is more convenient to formulate the problem in terms of dis­
placements. For isotropic elastic plates such formulation can be found in Chu and
Herrmann [7J and elsewhere. To the author's knowledge the field equations in terms of
displacements for the case of rectilinearly orthotropic elastic plates are unavailable. The
purpose of the present paper is to derive these field equations, and to use them to study
the nonlinear behaviour of a simply supported rectangular plate exhibiting rectilinear
orthotropy, under uniformly distributed load. In obtaining an approximate solution
Galerkin-Bubnov method has been used. The results are compared to other known
solutions, and the effect of the degree of orthotropy on the nonlinear behaviour is studied
for some specific cases.

BASIC EQUATIONS

The principle of minimum potential energy will be used in deriving the governing
equations. According to this principle of all possible displacement configurations of an
elastic structure the true displacement will be the one for which the total potential energy
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is minimum. For the case of nonlinear bending of thin plates the total potential energy of
the system is the sum of the work done by external forces and the strain energy of bending
and the strain energy of stretching of the middle surface of the plate. Here nonlinearity is
introduced through the consideration of stretching of the middle surface.

Consider a thin elastic plate of uniform thickness h, exhibiting rectilinear orthotropy,
having any arbitrary boundary. The plate is assumed to be oriented such that the elastic
axes are parallel to a set of rectangular coordinate axes (Fig. I). Using the usual notations
of u, v and w for displacements in the plane of the plate and transverse directions, re­
spectively, the strains of the middle surface of the plate can be written ast:

b

y

•
f--~a_--l·1

(I)

FIo. 1. Geometry of the plate and the directions of the elastic axes.

Hooke's law for orthotropic elastic material is given by:

(jxx = Ijvxy[Exsx+vxEysyJ

(jyy = Ijvxy[Er':y+vyExExJ (2)

(2)

(4)

where Ex, Ey are Young's modulii in the x and y directions, and G is the shear modulus.
And vxy = I vxvy, where Vx and vy are the Poisson's ratios in the x and y directions,
respectively.

The strain energy of stretching of the middle surface, therefore, can be written as:

s _ 1f {ExX sYY( ) G} dV - - -(ExExx+vxEyEy)+-- Eysyy+vyExExx +Sxy Sxy v.
2 vxy vxvv .

The strain energy of bending of the plate element dA can be written as (see [2]):

Vb = ~L{Dxw';x +Dyw;y +2DxvywxxWyy +4Dkw,;y} dA

t In what follows, the subscripts associated. with u, v and w refer to differentiations, e.g., Ux = oujOx,
wxy = 02 W/ OX oy, etc.
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(5)

where w is the transverse displacement of the middle surface of the plate, Dx , Dy are the
bending rigidities in x and y directions, and Dk = Gh 3/12.

Assume that the plate is resting on an elastic foundation of Winkler type and subjected
to a uniformly distributed load q over the e~tire area of the plate. The work done by the
load q and the reaction of the foundation is given by:

W = ~1{-2qw+kw2} dA

where k is the foundation modulus.
Combining equations (3-5) and using equations (1), the total potential energy of the

system is found to be:

n = ~1 {Dxw;x+Dyw;y+2Dxvywxxwyy+4DkW;y+h/vxy[Ex(ux+tw;)2

+ Ey(vy+tw;)2 + 2vxEy(ux+tw;)(vy+tw;)+ GVXY(Uy+ vx+ wxW)2]

-2qw+kw2} dA, (6)

or,

(7)

(8i)

(8ii)

(8iii)

The Euler equations corresponding to the functional given in equation (7) are:

~( of ) +~( of) _ 0
ox oUx oy OUy -

:x(:~J +:y(:~J = 0

of 0 ( of ) 0 ( of ) 0
2

( of) 0
2

( of ) 0
2

(of)
ow - ox oWx - oy oWy + ox 2 oWxx + oy2 OWyy + ox oy OWXy = O.

Using equations (6) and (8), after some rearrangements, we obtain the following equations:

(9i)

(9ii)

in which,

m
2 = Vy+ 2DdD"

/2 = Dy/Dx = Ey/Ex

p2 = G/Ex(l-vxvy).

(10)
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Equations (9) constitute the formulation of the problem in terms of displacements.
For isotropic plates rn 2 = /2 = 1, p2 = (1- v)/2 and the equations reduce to those given
by Mansfield [5].

SIMPLY SUPPORTED RECTANGULAR PLATES

Equations (9) will be used to study the nonlinear behaviour of a simply supported
rectangular plate (Fig. 1). The edges of the plate are assumed to be immovable. Thus the
boundary conditions on u, v and ware:

at x = 0, a:

u = w = wxx = 0;

at y = 0, b:

v = w = W yy = 0. (11)

The set of equations given in (9) are coupled and nonlinear in nature, and exact solution
is extremely difficult to obtain. Therefore, an approximate solution will be obtained here.
Let Wo be the transverse deflection at the centre of the plate (i.e., at x = a12, y = bI2), and
let

Also, let

w = Wo sin nxla sin nylb.

2

U = won (cos 2nylb - 1+ f32 Vy ) sin 2nxla
16a

2

V = ~~:(cos2nxla-l+vy//2f32)sin2nYlb

(12)

(13)

(14)

where f3 = alb.
Clearly this choice of the displacements u, v and w satisfy all the boundary conditions

given by equation (11). Furthermore, equation (13) satisfies the first two equations of the
set of equation (9). To dispose of the last equation of (9) we use the Galkerin-Bubnov
procedure, and compute the integral

J: J: !\ sin nxla sin nylb dx dy = °
where !\ is the left-hand side of equation (9iii). After evaluation of the necessary integrals
and some simplification, we obtain the following:

(15)

where,

(16)
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Since no other solution seems to be available for the present problem it is possible to
compare the above result with the isotropic case only for which we have / = m = 1,
Vx = v y = .. n x = D y = D, and equation (15) reduces to (with k = 0):

/2(1 + [32)2 (:0) + /6 [4v[32 +(3 - v2)(1+ [34)] (:0r= ~~~~:(1- v2) (17)

which matches exactly with the result given in Ref. [6].
Using equations (1), (2) and (13) the dimensionless membrane stresses iix and iiy can

be written in the form:

(18)

where,

(19)

!Xl = (2-[32Vy+2[32V)2-vxV)

!X2 = (2/2[32 +Vy- [32V;).

In order to study the effect of the degree of orthotropy on the nonlinear behaviour the
following types of orthotropy are considered (Table 1). The data in Table 1 correspond
roughly to those concerning two real materials (plywood and delta product).

TABLE I

Type Ex Ey G Vx vy

I I·Oxl05 0·5 X 105 0·1 X 105 0·05 0·025
II 1·0 x 105 0·05 X 105 0·05 X 105 0·20 0·01

III E E G 0·30 0·30

In Fig. 2 the values of the dimensionless central deflection wo/h are plotted against
the dimensionless load parameter Q = qa4 /D x h for [3 = 1,2 and for the types of orthotropy
given in Table 1. It can be seen from Fig. 2 that for isotropy and weak orthotropy (i.e.,
Orthotropy I) the effect of the membrane stresses becomes less significant with increase
in the aspect ratio. On the other hand, for the case of strong orthotropy (i.e., Orthotropy
II) the membrane stresses have a significant effect on the deflection for both values of the
aspect ratio. Furthermore, for any given value of [3, the central deflection is greatest for
strong orthotropy and least for isotropy. It is also clear that the effect of the membrane
stresses depends on the combination of the aspect ratio and the degree of orthotropy.

Figure 3 shows the variation of the dimensionless membrane stresses with wo/h for the
orthotropic plates and aspect ratios one and two. It can be seen that the membrane stresses
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FIG. 2. Load-deflection curves.
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FIG. 3. Plot of membrane stresses vs wo/IJ for fJ = I and fJ = 2.

increase rapidly with increasing amplitude. It is obvious that stresses can be either reduced
or raised by an appropriate selection of the degree of orthotropy. Due to different tensile
moduli, the stresses of a square plate at the centre are not equal to each other and the
stress in the y direction associated with the higher tensile modulus is greater than that in
the x direction.
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A6cTpaKT- ):(JIli orrpeAeJIlilOll\HX ypaBHeHHil: rrOJIeil: AaeTCli H3JIOlKeHile B rrepeMell\eHHlIX, c l.\eJIblO orrHcaHHlI
HeJIHHeil:Horo rrOBeAeHHlI rrpliMOJIHHeil:Hblx, OpTOTporrHblX rrJIaCTHHOK. ):(aJIee, HCrrOJIb3YlOTCM 3TH ypaBHeHHlI
AJIli rrOJIy'leHHlI rrpH6JIHlKeHHOro perneHHlI CBo6oAHO orrepToil:, rrpliMoyrOJIbHoil: rrJIaCTHHKH, rrOABeplKeHHoil:
Aeil:cTBHIO paBHOMepHO pacrrpeAeJIeHHoil: Harpy3KH. IlpH6JIHlKeHHoe peweHHe rrOJIy'laeTcli rryTeM rrpHMeH­
eHHlI MeTOAa oy6HoBa-raJIepKHHa. I1cCJIeAyeTcli HeJIHHeil:Hoe rrOBeAeHHe AJIli HeKOTopblX CrreI.\HclJH'IeCKHX
rropliAKOB OpTOTporrHH.


